Penalized-likelihood PET Image Reconstruction Using 3D Structural Convolutional Sparse Coding

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized-likelihood image reconstruction for digital holography.

Conventional numerical reconstruction for digital holography using a filter applied in the spatial-frequency domain to extract the primary image may yield suboptimal image quality because of the loss in high-frequency components and interference from other undesirable terms of a hologram. We propose a new numerical reconstruction approach using a statistical technique. This approach reconstruct...

متن کامل

Spatial Resolution in Penalized-Likelihood Image Reconstruction

Spatial Resolution in Penalized-Likelihood Image Reconstruction byJoseph Webster Stayman Chair: Jeffrey A. Fessler Penalized-likelihood methods have been used widely in image reconstruction sincethey can model both the imaging system geometry and measurement noise verywell. However, images reconstructed by conventional penalized-likelihood methodsare subject to anisotropic and s...

متن کامل

Variance Images for Penalized-Likelihood Image Reconstruction

This paper describes new approximations for the variance and covariance of images reconstructed by penalized-likelihood (PL) methods, and presents a simple procedure for computing those approximations. The proposed approximations require less computation than the PL estimates themselves. The method enables the display of variance images, which can provide an indication of uncertainty that may b...

متن کامل

Compressed Sensing Dynamic MRI Reconstruction Using GPU-accelerated 3D Convolutional Sparse Coding

In this paper, we introduce a fast alternating method for reconstructing highly undersampled dynamic MRI data using 3D convolutional sparse coding. The proposed solution leverages Fourier Convolution Theorem to accelerate the process of learning a set of 3D filters and iteratively refine the MRI reconstruction based on the sparse codes found subsequently. In contrast to conventional CS methods ...

متن کامل

Convolutional Sparse Coding-based Image Decomposition

We propose a novel sparsity-based method for cartoon and texture decomposition based on Convolutional Sparse Coding (CSC). Our method first learns a set of generic filters that can sparsely represent cartoon and texture type images. Then using these learned filters, we propose a sparsity-based optimization framework to decompose a given image into cartoon and texture components. By working dire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Biomedical Engineering

سال: 2020

ISSN: 0018-9294,1558-2531

DOI: 10.1109/tbme.2020.3042907