Penalized-likelihood PET Image Reconstruction Using 3D Structural Convolutional Sparse Coding
نویسندگان
چکیده
منابع مشابه
Penalized-likelihood image reconstruction for digital holography.
Conventional numerical reconstruction for digital holography using a filter applied in the spatial-frequency domain to extract the primary image may yield suboptimal image quality because of the loss in high-frequency components and interference from other undesirable terms of a hologram. We propose a new numerical reconstruction approach using a statistical technique. This approach reconstruct...
متن کاملSpatial Resolution in Penalized-Likelihood Image Reconstruction
Spatial Resolution in Penalized-Likelihood Image Reconstruction byJoseph Webster Stayman Chair: Jeffrey A. Fessler Penalized-likelihood methods have been used widely in image reconstruction sincethey can model both the imaging system geometry and measurement noise verywell. However, images reconstructed by conventional penalized-likelihood methodsare subject to anisotropic and s...
متن کاملVariance Images for Penalized-Likelihood Image Reconstruction
This paper describes new approximations for the variance and covariance of images reconstructed by penalized-likelihood (PL) methods, and presents a simple procedure for computing those approximations. The proposed approximations require less computation than the PL estimates themselves. The method enables the display of variance images, which can provide an indication of uncertainty that may b...
متن کاملCompressed Sensing Dynamic MRI Reconstruction Using GPU-accelerated 3D Convolutional Sparse Coding
In this paper, we introduce a fast alternating method for reconstructing highly undersampled dynamic MRI data using 3D convolutional sparse coding. The proposed solution leverages Fourier Convolution Theorem to accelerate the process of learning a set of 3D filters and iteratively refine the MRI reconstruction based on the sparse codes found subsequently. In contrast to conventional CS methods ...
متن کاملConvolutional Sparse Coding-based Image Decomposition
We propose a novel sparsity-based method for cartoon and texture decomposition based on Convolutional Sparse Coding (CSC). Our method first learns a set of generic filters that can sparsely represent cartoon and texture type images. Then using these learned filters, we propose a sparsity-based optimization framework to decompose a given image into cartoon and texture components. By working dire...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Biomedical Engineering
سال: 2020
ISSN: 0018-9294,1558-2531
DOI: 10.1109/tbme.2020.3042907